Difusión unidimensional

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Fenómenos de transporte
Conducción del calor
Simulación de la
conducción

marca.gif (847 bytes)Difusión unidimensional
Simulación de la difusión

Movimiento browniano
Sedimentación
Ley de Fick

Solución analítica

java.gif (886 bytes) Actividades

 

Ley de Fick

La experiencia nos demuestra que cuando abrimos un frasco de perfume o de cualquier otro líquido volátil, podemos olerlo rápidamente en un recinto cerrado. Decimos que las moléculas del líquido después de evaporarse se difunden por el aire, distribuyéndose en todo el espacio circundante. Lo mismo ocurre si colocamos un terrón de azúcar en un vaso de agua, las moléculas de sacarosa se difunden por todo el agua. Estos y otros ejemplos nos muestran que para que tenga lugar el fenómeno de la difusión, la distribución espacial de moléculas no debe ser homogénea, debe existir una diferencia, o gradiente de concentración entre dos puntos del medio.

Difus_1.gif (2401 bytes)

Supongamos que su concentración varía con la posición al lo largo del eje X. Llamemos J a la densidad de corriente de partículas, es decir, al número efectivo de partículas que atraviesan en la unidad de tiempo un área unitaria perpendicular a la dirección en la que tiene lugar la difusión. La ley de Fick afirma que la densidad de corriente de partículas es proporcional al gradiente de concentración

La constante de proporcionalidad se denomina coeficiente de difusión D y es característico tanto del soluto como del medio en el que se disuelve.

La acumulación de partículas en la unidad de tiempo que se produce en el elemento de volumen Sdx es igual a la diferencia entre el flujo entrante JS, menos el flujo saliente J’S, es decir

La acumulación de partículas en la unida de tiempo es

Igualando ambas expresiones y utilizando la Ley de Fick se obtiene

Ecuación diferencial en derivadas parciales que describe el fenómeno de la difusión .

 

Solución analítica

Vamos a considerar el problema de la difusión unidimensional de una masa M de soluto, situada en el origen de un medio unidimesional representado por el eje X.

Difus_3.gif (1390 bytes)

La solución de la ecuación diferencial nos da la concentración en los puntos x del medio en cada instante de tiempo t.

Image23.gif (1423 bytes)

La cual se puede comprobarse por simple sustitución en la ecuación diferencial

Vamos a estudiar dos tipos de difusión

  1. Gas en aire, se supondrán gases ideales. En esta aproximación el coeficiente de difusión se mantiene constante y no varía con la concentración.
  1. De un soluto sólido en un disolvente, el coeficiente de difusión es sensible a la concentración, aunque supondremos disoluciones diluidas. Para bajas concentraciones el coeficiente de difusión se mantiene aproximadamente constante.

En el programa interactivo, cada vez que se introduce el valor del tiempo, se traza en la ventana del applet la función n(x,t). Se puede observar que el área bajo la curva acampanada es la misma para todos las gráficas, lo que ha ocurrido es una cambio de escala horizontal y vertical en un factor proporcional a .

Debajo de cada curva se traza un segmento cuya medida es igual a la raíz cuadrada de la media de los cuadrados de los desplazamientos de las partículas, y mide la extensión efectiva de las partículas en el medio.

En los dos ejemplos de difusión, de un gas en aire, o de un soluto en agua (líquido), se pone de manifiesto la relación entre el orden de magnitud del coeficiente de difusión y la escala de longitud o de tiempo en el que transcurren ambos fenómenos.

 

Actividades

  • Se elige el soluto y el disolvente en la siguiente tabla.  Se presentan dos grupos: gases y vapores en aire en el que el exponente del coeficiente de difusión es -4, y soluciones acuosas en el que el exponente del coeficiente de difusión es -9.
Gases y vapores en aire
1 Hidrógeno 0.64 10-4
2 Oxígeno 0.18 10-4
3 Alcohol 0.10 10-4
4 Benceno 0.08 10-4
Soluciones acuosas
5 Azúcar 0.36 10-9
6 Sal común 1.10 10-9
7 Alcohol 0.80 10-9
  • Se introduce el instante t en el que queremos representar la distribución de concentraciones a lo largo del eje X, en el control de edición titulado Tiempo, y se pulsa en el botón titulado Gráfico.
  • Se introduce otro instante t en el que queremos representar la distribución de concentraciones a lo largo del eje X, y se vuelve a pulsar el botón titulado Gráfico. Y así sucesivamente.

 

Cuestiones

Debajo de la curva se traza un segmento que mide la extensión efectiva de las partículas de soluto en el disolvente. En la parte superior derecha se proporciona el valor numérico de la longitud de dicho segmento.

Comparar la difusión en dos casos pertenecientes al mismo grupo, midiendo la extensión efectiva de soluto en el disolvente en los mismos instantes.

Comparar la difusión de un gas en aire y de una solución acuosa, midiendo la extensión efectiva de soluto en el disolvente en los mismos instantes. Las unidades de medida del eje X están marcadas en dm.

DifusionApplet3 aparacerá en un explorador compatible con JDK 1.1