Sistema Internacional de Unidades Errores en las medidas La balanza El calibre Medida del área de una figura rectangular
|
||
Reglas para expresar una medida y su errorToda medida debe de ir seguida por la unidad, obligatoriamente del Sistema Internacional de Unidades de medida. Cuando un físico mide algo debe tener gran cuidado para no producir una perturbación en el sistema que está bajo observación. Por ejemplo, cuando medimos la temperatura de un cuerpo, lo ponemos en contacto con un termómetro. Pero cuando los ponemos juntos, algo de energía o "calor" se intercambia entre el cuerpo y el termómetro, dando como resultado un pequeño cambio en la temperatura del cuerpo que deseamos medir. Así, el instrumento de medida afecta de algún modo a la cantidad que deseábamos medir Además, todas las medidas está afectadas en algún grado por un error experimental debido a las imperfecciones inevitables del instrumento de medida, o las limitaciones impuestas por nuestros sentidos que deben de registrar la información.
Por ejemplo, al medir una cierta distancia hemos obtenido 297±2 mm. De este modo entendemos que la medida de dicha magnitud está en alguna parte entre 295 mm y 299 mm. En realidad, la expresión anterior no significa que se está seguro de que el valor verdadero esté entre los límites indicados, sino que hay cierta probabilidad de que esté ahí.
Medidas directasUn experimentador que haga la misma medida varias veces no obtendrá, en general, el mismo resultado, no sólo por causas imponderables como variaciones imprevistas de las condiciones de medida: temperatura, presión, humedad, etc., sino también, por las variaciones en las condiciones de observación del experimentador. Si al tratar de determinar una magnitud por medida directa realizamos varias medidas con el fin de corregir los errores aleatorios, los resultados obtenidos son x1, x2, ... xn se adopta como mejor estimación del valor verdadero, el valor medio <x>, que viene dado por El valor medio, se aproximará tanto más al valor verdadero de la magnitud cuanto mayor sea el número de medidas, ya que los errores aleatorios de cada medida se va compensando unos con otros. Sin embargo, en la práctica, no debe pasarse de un cierto número de medidas. En general, es suficiente con 10, e incluso podría bastar 4 ó 5. Cuando la sensibilidad del método o de los aparatos utilizados es pequeña comparada con la magnitud de los errores aleatorios, puede ocurrir que la repetición de la medida nos lleve siempre al mismo resultado; en este caso, está claro que el valor medio coincidirá con el valor medido en una sola medida, y no se obtiene nada nuevo en la repetición de la medida y del cálculo del valor medio, por lo que solamente será necesario en este caso hacer una sola medida. De acuerdo con la teoría de Gauss de los errores, que supone que estos se producen por causas aleatorias, se toma como la mejor estimación del error, el llamado error cuadrático definido por El resultado del experimento se expresa como
Es evidente, por ejemplo, tomando el caso más extremo, que si el resultado de las n medidas ha sido el mismo, el error cuadrático, de acuerdo con la formula será cero, pero eso no quiere decir que el error de la medida sea nulo. Sino, que el error instrumental es tan grande, que no permite observar diferencias entre las diferentes medidas, y por tanto, el error instrumental será el error de la medida. Ejemplos:El siguiente applet se puede utilizar para calcular el valor medio de una serie de medidas y el error cuadrático. Se introduce cada una de las medidas en el área de texto del applet, y se pulsa RETORNO, de este modo las medidas aparecen en una columna. A continuación se pulsa el botón titulado Calcular. El botón titulado Borrar limpia el área de texto y lo prepara para la introducción de otra serie de medidas.
Error absoluto y error relativoLos errores de los que hemos estado hablando hasta ahora son los errores absolutos. El error relativo se define como el cociente entre el error absoluto y el valor medio. Es decir donde <x> se toma en valor absoluto, de forma que e es siempre positivo. El error relativo es un índice de la precisión de la medida. Es normal que la medida directa o indirecta de una magnitud física con aparatos convencionales tenga un error relativo del orden del uno por ciento o mayor. Errores relativos menores son posibles, pero no son normales en un laboratorio escolar.
Medidas indirectasEn muchos casos el valor experimental de una magnitud se obtiene, de acuerdo a una determinada expresión matemática, a partir de la medida de otras magnitudes de las que depende. Se trata de conocer el error en la magnitud derivada a partir de los errores de las magnitudes medidas directamente.
Funciones de una sola variableSupongamos que la magnitud y cuyo valor queremos hallar, depende solamente de otra magnitud x, mediante la relación funcional y=f(x). El error de y cuando se conoce el error de x viene dado por la expresión. de nuevo <x> es el valor medio Un ejemplo importante y frecuente en el laboratorio sobre las medidas indirectas es el siguiente:
Es evidente, que podemos aumentar indefinidamente la resolución instrumental para medir P aumentando el número de periodos que incluimos en la medida directa de t. El límite está en nuestra paciencia y la creciente probabilidad de cometer errores cuando contamos el número de oscilaciones. Por otra parte, el oscilador no se mantiene con la misma amplitud indefinidamente, sino que se para al cabo de un cierto tiempo.
Función de varias variablesLa magnitud y viene determinada por la medida de varias magnitudes p, q, r, etc., con la que está ligada por la función y=f(p, q, r ...). El error de la magnitud y viene dado por la siguiente expresión. Casos más frecuentes
|