Search   
Home  Print View  

 

Branch Content

CPU Internal Bus (Backplane)

CPU Backplane slots are classified into two classes: DATA SLOTS (for data oriented cards such as the ALU and registers cards) and CONTROL SLOTS (for controller cards such as IDS and Interrupt Controller).

The pin-out adopted is identical to the industrial standard VME Bus P1, except for those signals not used in the Heritage/1. Point-to-point signals and Heritage/1 specific buses have been added in place of those.

Data Slots

The table below shows the resulting pin out for DATA SLOTS. Signals labeled CTL are for point-to-point connections mostly internal control signals. Some other signals have been added such as: SR (System Reset) and CSZ, CSN, CSC (Conditional Status Zero, Negative and Carry, respectively).

     A      B     C
- - - - - - - - - - - -    
1    DO    CTL    D8
2    D1    SR     D9    
3    D2    CTL    D10
4    D3    CTL    D11
5    D4    CSZ    D12
6    D5    CSN    D13
7    D6    CSC    D14
8    D7    CS3    D15
9    GND   CS4    GND
10   CLK   CS5    CTL
11   GND   CS6    CTL
12   CTL   CS7    CTL
13   CTL   CTL    CTL
14   CTL   CTL    CTL
15   GND   CTL    CTL
16   CTL   CTL    CTL
17   GND   CTL    CTL
18   CTL   CTL    CTL
19   GND   CTL    CTL
20   CTL   GND    CTL
21   CTL   CTL    CTL
22   CTL   CTL    CTL
23   CTL   GND    A15
24   A7    CTL    A14
25   A6    CTL    A13
26   A5    CTL    A12
27   A4    CTL    A11
28   A3    CTL    A10
29   A2    CTL    A9
30   A1    A0     A8
31   CTL   CTL    CTL
32   +5V   +5V    +5V

Control Slots

For Control Slots, same control pins plus the 16 address lines (not used by IDS cards) are wired in three local control buses: C-BUS, S-BUS and T-BUS. Lines D0-15 are not wired from the internal Data Bus as in Data Slots but directly from the Instruction Register (IR).

The table below shows the pin out for Control Slots.

     A      B     C
- - - - - - - - - - - -    
1    DO    SF     D8
2    D1    SR     D9    
3    D2    S0     D10
4    D3    S1     D11
5    D4    CSZ    D12
6    D5    CSN    D13
7    D6    CSC    D14
8    D7    CS3    D15
9    GND   CS4    GND
10   CLK   CS5    IE
11   GND   CS6    CTL
12   ET0   CS7    CTL
13   ET1   CCS    CTL
14   ET2   CTL    CTL
15   GND   CTL    CTL
16   CTL   CTL    CTL
17   GND   CTL    CTL
18   CTL   CTL    CTL
19   GND   CTL    CTL
20   CTL   GND    CTL
21   CTL   CTL    CTL
22   CTL   CTL    CTL
23   CTL   GND    CTL
24   CTL   CTL    CTL
25   CTL   CTL    CTL
26   CTL   CTL    CTL
27   CTL   CTL    CTL
28   CTL   CTL    CTL
29   CTL   CTL    CTL
30   CTL   CTL    CTL
31   CTL   CTL    CTL
32   +5V   +5V    +5V

Control Bus (C-BUS)

The purpose of  wiring all control signals in a bus is to allow different controllers (such as IDSs and the Interrupt Controller) to manage the same control lines as illustrated in the figure below:


Status Bus (S-BUS)

SF   Fetch Cycle
SR   System Reset
S0   Operational Status
S1   Operational Status
CSZ  Conditional Status Zero
CSN  Conditional Status Negative
CSC  Conditional Status Carry
CS3  Conditional Status (Reserved)
CS4  Conditional Status (Reserved)
CS5  Conditional Status (Reserved)
CS6  Conditional Status (Reserved)
CS7  Conditional Status (Reserved)
CCS  Clear Conditonal Status
IE   Interrupt Enabled

SF signal is activated by instruction decoding logic (located at IDS cards) during the falling edge
of the last clock cycle of every instruction. The signal is used to syncrhonically clear both IR and the T-Counter; this action forces an Op Code Fetch Cycle taking place with the next clock rising edge.

S0, S1 define the current Operational Status according to the following table:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S1   S0   Operational Status
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0    0    Halt
0    1    Interrupt being negotiated (before ISR is called)
1    0    IDS having control in Step mode
1    1    IDS having control in Run  mode
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

If S1=0, IDS card ihibit themselves so other circuit (such as the Interrupt Controller or the Console) can take control of the machine. When S1=S0=1 and interrupt is enabled (IE=0), the Interrupt Controller card is allowed to serve interrupts. In that event, the Interrupt Controller will pull signal S1 down to zero for inhibiting IDS cards so it can take control of the machine while negotiating the interrupt with the interrupter device (see Interrupt life-time).

Conditional Status signals come from the Flags Registers (F). The first three are defined: CSZ, CSN, CSC; the other five (CS3-7) are reserved for future use. These signals are set from data oriented circuits; for instance, a register been cleared by an instruction will activate the CSZ signal). The signal CCS (activated by a controller such as an IDS card) will clear all flags at once.

Sequence Bus (T-BUS)

The T-BUS is fed from the "Sequece Counter" and represent the encoded clock cycles: T1, T2, ... T6. Actual signals are termed "ETi" for "encoded time":

ET0
ET1
ET2

Note: ET0 = ET1 = ET2 = 0 represents T1.

Homebuilt CPUs WebRing

JavaScript by Qirien Dhaela

Join the ring?

David Brooks, the designer of the Simplex-III homebrew computer, has founded the Homebuilt CPUs Web Ring. To join, drop David a line, mentioning your page's URL. He will then add it to the list.
You will need to copy this code fragment into your page.

Project start date: May 13 of 2009