Movimiento circular

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Cinemática

Movimiento rectilíneo
y circular
Movimiento rectilíneo
Movimiento de caída
de los cuerpos
Regresión lineal
Movimiento rectilíneo
uniforme
Movimiento rectilíneo
u. acelerado

marca.gif (847 bytes)Movimiento circular
Encuentro de dos
vehículos
Relación entre las 
magnitudes lineales
y angulares
Movimiento circular uniforme

Movimiento circular uniformemente acelerado

 

En esta sección vamos a definir las magnitudes características de un movimiento circular, análogas a las ya definidas para el movimiento rectilíneo.

Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes.

circular_1.gif (1326 bytes)

Posición angular, q

En el instante t el móvil se encuentra en el punto P. Su posición angular viene dada por el ángulo q, que hace el punto P, el centro de la circunferencia C y el origen de ángulos O.

En el instante t' el móvil se encontrará en la posición P' dada por el ángulo q '. El móvil se habrá desplazado Dq=q '-q en el intervalo de tiempo Dt=t'-t comprendido entre t y t'.

Velocidad angular, w

Se denomina velocidad angular media al cociente entre le desplazamiento y el tiempo.

Como ya se explicó en el movimiento rectilíneo, la velocidad angular en un instante se obtiene calculando la velocidad angular media en un intervalo de tiempo que tiende a cero.

Si en el instante t la velocidad angular del móvil es w y en el instante t' la velocidad angular del móvil es w'. La velocidad angular del móvil ha cambiado Dw=w'-w en el intervalo de tiempo Dt=t'-t comprendido entre t y t'.

Aceleración angular, a

Se denomina velocidad angular media al cociente entre le desplazamiento y el tiempo.

La aceleración angular en un instante, se obtiene calculando la aceleración angular media en un intervalo de tiempo que tiende a cero.

 

Dada la velocidad angular, hallar el desplazamiento angular

Si conocemos un registro de la velocidad angular del móvil podemos calcular su desplazamiento q-q0   entre los instantes t0 y t, mediante la integral definida.

El producto w dt representa el desplazamiento angular del móvil entre los instantes t y t+dt, o en el intervalo dt. El desplazamiento total es la suma de los infinitos desplazamientos angulares infinitesimales entre los instantes t0 y t.

En la figura, se muestra una gráfica de la velocidad angular en función del tiempo, el área en color azul mide el desplazamiento angular total del móvil entre los instantes t0 y t, el arco en color azul marcado en la circunferencia.

circular_3.gif (2192 bytes) circular_3_3.gif (1994 bytes)

Hallamos la posición angular q del móvil en el instante t, sumando la posición inicial q0 al desplazamiento, calculado mediante la medida del área bajo la curva w-t o mediante cálculo de la integral definida en la fórmula anterior.

 

Dada la aceleración angular, hallar el cambio de velocidad angular

Del mismo modo que hemos calculado el desplazamiento angular del móvil entre los instantes t0 y t, a partir de un registro de la velocidad angular w en función del tiempo t, podemos calcular el cambio de velocidad w-w0 que experimenta el móvil entre dichos instantes, a partir de una gráfica de la aceleración angular en función del tiempo.

circular_4.gif (1375 bytes) En la figura, el cambio de velocidad w-w0 es el área bajo la curva a-t, o el valor numérico de la integral definida en la fórmula anterior.

Conociendo el cambio de velocidad angular w-w0, y el valor inicial w0 en el instante inicial t0, podemos calcular la velocidad angular w en el instante t.

Resumiendo, las fórmulas empleadas para resolver problemas de movimiento circular son similares a las del movimiento rectilíneo.

 

Movimiento circular uniforme

circular_5.gif (1226 bytes) Un movimiento circular uniforme es aquél cuya velocidad angular w es constante, por tanto, la aceleración angular es cero. La posición angular q del móvil en el instante t lo podemos calcular integrando

q-q0=w(t-t0)

o gráficamente, en la representación de w en función de t.

Habitualmente, el instante inicial t0 se toma como cero. Las ecuaciones del movimiento circular uniforme son análogas a las del movimiento rectilíneo uniforme

 

Movimiento circular uniformemente acelerado

circular_6.gif (1237 bytes) Un movimiento circular uniformemente acelerado es aquél cuya aceleración a es constante.

Dada la aceleración angular podemos obtener el cambio de velocidad angular w-w0 entre los instantes t0 y t, mediante integración, o gráficamente.

circular_7.gif (1650 bytes)  

Dada la velocidad angular w en función del tiempo, obtenemos el desplazamiento q-q0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando

Habitualmente, el instante inicial t0 se toma como cero. Las fórmulas del movimiento circular uniformemente acelerado son análogas a las del movimiento rectilíneo uniformemente acelerado.