Relación entre las magnitudes angulares y lineales

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Cinemática

Movimiento rectilíneo
y circular
Movimiento rectilíneo
Movimiento de caída
de los cuerpos
Regresión lineal
Movimiento rectilíneo
uniforme
Movimiento rectilíneo
u. acelerado

Movimiento circular
Encuentro de dos
vehículos
marca.gif (847 bytes)Relación entre las 
  magnitudes lineales
  y angulares

Magnitudes lineales y angulares

circular_8.gif (1531 bytes) De la definición de radián (unidad natural de medida de ángulos) obtenemos la relación entre el arco y el radio. Como vemos en la figura, el ángulo se obtiene dividiendo la longitud del arco entre su radio

Derivando s=rq  respecto del tiempo obtenemos la relación entre la velocidad lineal y la velocidad angular

La dirección de la velocidad es tangente a la trayectoria circular, es decir, perpendicular a la dirección radial

 

Aceleración tangencial

Derivando esta última relación con respecto del tiempo obtenemos la relación entre la aceleración tangencial at y la aceleración angular.

Un móvil tiene aceleración tangencial, siempre que el módulo de su velocidad cambie con el tiempo.

 

Aceleración normal

El cálculo de la componente normal de la aceleración es algo más complicado. La aceleración normal está relacionada con el cambio de la dirección de la velocidad con el tiempo. En un movimiento circular uniforme no existe aceleración tangencial ya que le módulo de la velocidad no cambia con el tiempo, solamente cambia su dirección y por tanto, tiene aceleración normal.

circular_2.gif (2190 bytes)

Supongamos un móvil que describe un movimiento circular uniforme. Calculemos el cambio de velocidad Dv=v’-v que experimenta el móvil entre los instantes t y t', tal como se ve en la figura. El vector Dv tiene dirección radial y sentido hacia el centro de la circunferencia. Los triángulos de color rojo y de color azul de la figura son isósceles y semejantes por lo que podemos establecer la siguiente relación

Dividiendo ambos miembros entre el intervalo de tiempo Dt=t'-t

Cuando el intervalo de tiempo Dt tiende a cero, la cuerda Ds se aproxima al arco, y el cociente ds/dt nos da la velocidad v del móvil,

La aceleración normal an tiene dirección radial y sentido hacia el centro de la circunferencia que describe el móvil y su módulo viene dado por una u otra de las expresiones siguientes:

 

Resumiendo

circular_9.gif (1491 bytes) La dirección de la velocidad de un móvil en movimiento circular es tangente a la circunferencia que describe.

Un móvil tiene aceleración tangencial at siempre que cambie el módulo de la velocidad con el tiempo. El sentido de la aceleración tangencial es el mismo que el de la velocidad si el móvil acelera y es de sentido contrario, si se frena. Un móvil que describe un movimiento circular uniforme no tiene aceleración tangencial.

Un móvil que describe un movimiento circular siempre tiene aceleración normal, an ya que cambia la dirección de la velocidad con el tiempo. La aceleración normal tiene dirección radial y sentido hacia el centro de la circunferencia que describe.

La aceleración del móvil se obtiene sumando vectorialmente ambas componentes de la aceleración.