El escalón de potencial (E<E0)

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Mecánica Cuántica

La ecuación de
Schrödinger  
Escalón de potencial
E>E0
marca.gif (847 bytes)Escalón de potencial
  E<E0
Modelo de núcleo
radioactivo
Desintegración
radioactiva
Caja de potencial
Pozo de potencial
Átomo, molécula... 
sólido lineal
Potencial periódico
Defectos puntuales
Barreras de potencial
El oscilador armónico
cuántico
Descripción

java.gif (886 bytes) Actividades

 

El escalón de potencial es un ejemplo simple para resolver la ecuación de Schrödinger, pero que presenta importantes consecuencias que contradicen el comportamiento clásico de las partículas.

En esta sección veremos el comportamiento de una partícula cuya energía es menor que la del escalón de potencial. Este ejemplo nos servirá para introducir el efecto túnel, una de las consecuencias más sorprendentes de la Mecánica Cuántica, que explica la emisión de partículas alfa por núcleos radioactivos, el funcionamiento de ciertos transistores, y otros muchos fenómenos.

Desde el punto de vista clásico, la partícula tiene una energía cinética igual a la energía total E, a la izquierda del origen, ya que la energía potencial es cero. Sin embargo, tiene una energía cinética negativa a la derecha del origen ya que la energía potencial es mayor que la energía total. De acuerdo con la interpretación de la Mecánica Clásica, la partícula no podrá moverse en la región x>0, la partícula rebotará en el origen x=0.

La solución de la ecuación de Schrödinger en ambas regiones, indica que toda partícula incidente se refleja, pero existe una probabilidad no nula de encontrar partículas a la derecha de origen, en la región clásicamente prohibida, y esta probabilidad disminuye rápidamente a medida que nos adentramos en la citada región. En concreto, la probabilidad disminuye exponencialmente con la distancia x al origen.

El fenómeno análogo ondulatorio es la reflexión total, más allá de la superficie de separación entre los dos medios se puede detectar movimiento ondulatorio. La onda transmitida se amortigua exponencialmente en la dirección perpendicular a la superficie de separación. Sin embargo, el flujo medio de energía en la dirección normal es nulo, lo que quiere decir que toda la intensidad de la onda incidente se refleja.

 

Descripción

Planteamos la ecuación de Schrödinger en cada una de las regiones y hallamos su solución.

Escalonb.gif (852 bytes)

Comparando con la obtenida para el escalón de potencial con E>E0, nos daremos cuenta que al ser E<E0, k'2 es negativo y por tanto, k' es imaginario, llamaremos a=ik'.

La solución de la ecuación de Schrödinger para ambas regiones x<0 y x>0 se escribirá.

Región x<0, Ep(x)=0 Región x>0, Ep(x)=E0

En el punto x=0, la función de onda Y debe ser continua y también lo debe ser su derivada primera.

Lo que da lugar a un sistema de dos ecuaciones con dos incógnitas que nos permiten expresar los coeficientes B y C en función del coeficiente A.

Veamos ahora el significado físico de los distintos términos de la solución de la ecuación de Schrödinger. En la primera región x<0, tenemos partículas incidentes y reflejadas, pero en la segunda región x>0 solamente podemos tener la exponencial negativa, ya que la positiva tiende a infinito cuando cuando x se hace grande. La función de onda tiene por tanto, dos términos en la primera región y un solo término en la segunda.

Partículas Función de onda Probabilidad
incidentes
reflejadas
transmitidas

El hecho de que Yt(x) sea distinto de cero significa que hay alguna probabilidad de encontrar la partícula a la derecha del origen. Dicha probabilidad disminuye rápidamente cuando x crece. En general, la partícula no podrá penetrar mucho dentro de la región clásicamente prohibida.

Como podemos comprobar , por tanto, todas las partículas que alcanzan el escalón de potencial rebotan, incluyendo aquellas que penetran en la región a la derecha del origen.

 

Actividades

El programa interactivo nos permite ensayar con dos tipos de partículas los electrones y los protones, la masa de ambas partículas está en la relación 1/1836, y con otras partículas hipotéticas cuya masa está comprendida entre estos dos valores extremos. Observaremos que la penetración en la región clásicamente prohibida depende fuertemente de la masa de la partícula, siendo mayor cuanto menor sea ésta.

Para comprobarlo, situaremos a lo largo del eje X, detectores que van a registrar las partículas que penetran hasta una distancia x, en el interior del escalón de potencial. Un diagrama de barras nos mostrará el número de partículas registradas en cada detector.

  • Comprobar que toda partícula incidente se refleja, como se muestra en los contadores situados en la parte superior izquierda de la ventana.
  • Observar que no podemos predecir la conducta de una partícula individual, hasta que distancia x penetrará en la región a la derecha del origen. Sin embargo, podemos decir que tiene más probabilidad de ser detectada cerca del origen.
  • Observar que cuando el número de partículas incidentes es grande, el diagrama de barras se va ajustando a una curva exponencial decreciente.
  • Comprobar que es muy pequeña la probabilidad de detectar protones en el interior del escalón de potencial, debido a que su masa es muy grande, del orden 1836 veces mayor que la de un electrón.
  • Observar y describir los diagramas de barras producidos para cada energía por los electrones y los protones, y por otras partículas hipotéticas cuya masa esté comprendida entre la de un electrón y la de un protón. Introducir el valor de la masa en el control de edición titulado Masa de la partícula.

 

                 
 

Instrucciones para el manejo del programa

Se introduce el valor de la energía (menor que uno) en el control de edición titulado Energía.

Se selecciona el tipo de partícula, Protón o Electrón, actuando sobre el botón de radio correspondiente

Se activa la casilla titulada Ver movimiento para visualizar el movimiento de la partícula incidente y reflejada. En el caso de que la casilla esté sin activar solamente se muestra el destello de la partícula cuando es registrada por un detector situado a una distancia x del origen.

Se pulsa en el botón Empieza, para que las partículas incidentes penetren en la barrera de potencial y se reflejen. En la parte izquierda de la ventana se contabilizan el número de partículas incidentes y el número de partículas reflejadas.

Se pulsa en el botón Pausa para detener momentáneamente la experiencia y observar los resultados. Pulsar en el mismo botón titulado ahora Continua, para reanudarla.

Se pulsa varias veces en el botón Paso, para examinar la conducta individual de cada partícula, la distancia hasta la que penetra en la región a la derecha del origen. Pulsar en el botón titulado Continua, para reanudar la experiencia.