Mecánica Cuántica |
Experiencias relevantes Dispersión de partículas La estructura atómica El cuerpo negro (I) El cuerpo negro (II) Ley de Stefan- Boltzmann El efecto fotoeléctrico El efecto Compton La cuantización de la energía El espín del electrón Difracción de micro- partículas |
Descripción | |||||||||||||||||||||||
La emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son:
En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termoelectrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética. El objetivo de la práctica simulada es la determinación de la energía de arranque de los electrones de un metal, y el valor de la constante de Planck. Para ello, disponemos de un conjunto de lámparas que emiten luz de distintas frecuencias y placas de distintos metales que van a ser iluminadas por la luz emitida por esas lámparas especiales.
DescripciónSea f la energía mínima necesaria para que un electrón escape del metal. Si el electrón absorbe una energía E, la diferencia E-f, será la energía cinética del electrón emitido. Einstein explicó las características del efecto fotoeléctrico, suponiendo que cada electrón absorbía un cuanto de radiación o fotón. La energía de un fotón se obtiene multiplicando la constante h de Planck por la frecuencia n de la radiación electromagnética. Si la energía del fotón E, es menor que la energía de arranque f, no hay emisión fotoeléctrica. En caso contrario, si hay emisión y el electrón sale del metal con una energía cinética Ek igual a E-f. Por otra parte, cuando la placa de área S se ilumina con cierta intensidad I, absorbe una energía en la unidad de tiempo proporcional a IS, basta dividir dicha energía entre la cantidad hn para obtener el número de fotones que inciden sobre la placa en la unidad de tiempo. Como cada electrón emitido toma la energía de un único fotón, concluimos que el número de electrones emitidos en la unidad de tiempo es proporcional a la intensidad de la luz que ilumina la placa Mediante una fuente de potencial variable, tal como se ve en la figura podemos medir la energía cinética máxima de los electrones emitidos, véase el movimiento de partículas cargadas en un campo eléctrico. Aplicando una diferencia de potencial V entre las placas A y C se frena el movimiento de los fotoelectrones emitidos. Para un voltaje V determinado, el amperímetro no marca el paso de corriente, lo que significa que ni aún los electrones más rápidos llegan a la placa C. En ese momento, la energía potencial de los electrones se hace igual a la energía cinética. Variando la frecuencia n, (o la longitud de onda de la radiación que ilumina la placa) obtenemos un conjunto de valores del potencial de detención V0. Llevados a un gráfico obtenemos una serie de puntos (potencial de detención, frecuencia) que se aproximan a una línea recta. La ordenada en el origen mide la energía de arranque en electrón-voltios f/e. Y la pendiente de la recta es h/e. Midiendo el ángulo de dicha pendiente y usando el valor de la carga del electrón e= 1.6 10-19 C, obtendremos el valor de la constante de Planck, h=6.63 10-34 Js.
ActividadesNo es posible disponer de lámparas que emitan a todas las frecuencias posibles, solamente existen lámparas hechas de materiales cuya emisión corresponde a unas determinadas líneas del espectro. Algunas de las líneas de emisión son muy débiles y otras son brillantes. En las tablas que vienen a continuación se proporcionan los espectros de emisión de metales y gases. La longitud de onda se da en Angstrom. Los números en negrita indican las líneas de mayor brillo.
Para realizar la práctica que simula el efecto fotoeléctrico se han de seguir los siguientes pasos:
|
Pulsar en el botón titulado Enviar para representar
gráficamente los datos en el applet situado más abajo.
Resultados
Se aconseja al estudiante que haga por sí mismo el tratamiento de los datos de este ejemplo instructivo, representando gráficamente los datos experimentales y determinando la recta de regresión que mejor ajusta. Posteriormente, comparará sus resultados con los del programa interactivo. Los datos de la experiencia se pueden recoger en tablas como la siguiente:
Elegir otro metal en la caja combinada desplegable para experimentar otra vez el efecto fotoeléctrico, volviendo a obtener el valor de la constante h de Planck. |